
VIRUS BULLETIN www.virusbtn.com

4 OCTOBER 2009

FLYING SOLO
Peter Ferrie
Microsoft, USA

Continuing his series of analyses of viruses contained in the
EOF-rRlf-DoomRiderz virus zine, Peter Ferrie looks at a
virus named ‘Pilot’.

The term ‘pilot’ in the sense of a television programme
can be likened to a proof-of-concept for a proposed series.
A ‘pilot’ in the sense of computer viruses might be an
appropriate term for a technique that could become common
in the future. At least, that’s one conclusion that might be
drawn from the virus whose author named it ‘Pilot’. (In
fact, the virus author named it ‘PiLoT’, intending to refer to
the PLT, as explained below.)

RESOLVE TO WORK HARDER
In the case of viruses for the Intel x86-based Linux
platform, it is common to see the use of ‘int 0x80’
instructions to call the system functions. However, in this
virus there are no ‘int 0x80’ instructions. Instead, the virus
resolves the function addresses dynamically, in much the
same way as most viruses for the Windows platform do.

The general principle of address resolution is to fi nd the
base address of the interesting external fi le (for example,
kernel32.dll in Windows and libc in Linux). On the
Windows platform, it is a trivial matter to walk a series
of in-memory structures to fi nd the one that refers to the
kernel32.dll fi le (though the current most common method
relies on an undocumented fi eld in one of those structures,
and thanks to a minor change related to that fi eld, the
technique does not work on the most recent version of
Windows). On the Linux platform, some searching is
required, since there is no equivalent direct pointer to the
libc fi le.

GET IT. ‘GOT’ IT? GOOD.
The virus begins by examining the Procedure Linkage
Table (PLT). Specifi cally, the virus examines the value at
PLT+8. The PLT is ultimately an array of jumps to imported
functions, however it contains additional instructions that
are used by the linker to resolve the addresses dynamically.
It begins with a push of an absolute indirect address,
followed by a jump through another absolute indirect
address (subsequent entries have a different format – a
jump through another absolute indirect address, followed
by a push of an immediate value, and ending with a relative
jump to the fi rst entry in the PLT). The fi rst entry in the

PLT jumps to the dynamic linker if its presence is required.
Subsequent entries jump to the other functions used by the
host process.

The source of the address for the jump is the Global Offset
Table (GOT)+8. The size of the push instruction is six
bytes and the address for the jump is two bytes into the
jump instruction. Thus, the value at PLT+8 is an address
within the GOT. The GOT is a table of pointers, and the
value at GOT+8 is a pointer to the _resolve symbol,
which points to the dynamic linker. If the dynamic linker
is not required (because the symbols were all resolved
before the process started) then the value at this location
will be zero.

ELVES VS TROLLS
The virus retrieves the value at GOT+8. If the value is zero,
then the virus retrieves the value at GOT+16 and trusts that
this value is a pointer within the libc fi le. If the value at
GOT+8 is not zero, then the virus page-aligns this value,
and uses it as a starting point for a search within memory.
The virus searches backwards in memory, page by page,
looking for the dynamic linker’s ELF header. The virus
recognizes the header when it fi nds the ‘ELF’ signature
at the start of a page, and a value that describes the fi le
as 32-bit class, data in LSB format, and version 1 header
format.

The virus contains no exception handling, so there is a
risk that, depending on the section layout, a gap exists in
memory between the starting location of the search and the
ELF header. If such a gap exists, then the virus will cause
a segmentation fault, which will cause the process to be
terminated.

Once the dynamic linker’s ELF header has been found, the
virus searches within the Program Header Table entries for
the PT_LOAD entry with the lowest virtual address and the
PT_DYNAMIC entry, which the virus assumes will always
exist. If the PT_DYNAMIC entry is found, then the virus is
interested in its virtual address.

The virus converts the virtual address of the PT_DYNAMIC
entry into a fi le offset, and then searches within the dynamic
linking array for an entry which has the DT_PLTGOT tag.
It is also assumed that this search will always be successful.
The associated pointer references the GOT of another fi le.
The virus retrieves this pointer, and then retrieves a value
from within that GOT, at offset 16. This value is assumed to
point into libc.

At this point, the virus performs the routine again,
beginning with the search for the ELF header, and ending
with the search for the DT_PLTGOT tag. The result is

MALWARE ANALYSIS

VIRUS BULLETIN www.virusbtn.com

5OCTOBER 2009

that the virus recovers the required values for the libc fi le:
a pointer to the dynamic linking array, the adjustment to
convert a virtual address to a fi le offset, and a pointer to
the GOT.

STRING THEORY
Given these values, the virus searches the dynamic linking
array for the entries whose tags are DT_STRTAB, DT_
SYMTAB, and DT_HASH. At last, the virus has all that
it needs to resolve arbitrary symbols. The virus retrieves
the addresses of the open, lseek, mmap, close, munmap,
mprotect, readdir, opendir and closedir APIs, which are
needed to infect fi les, and places the addresses on the stack.
The resolution is achieved by hashing the name of the API,
indexing through the bucket list (see VB, August 2009, p.4)
to fi nd the starting point in the list, and then comparing the
names in the list until a match is found.

The virus allocates two pages of memory for itself using
read/write attributes, copies itself to the fi rst page, then
changes the attributes of that page to read/execute. This
allows the virus to work on systems that enforce the
write^exec exclusion. That is, any given page can be
writable or executable, but not both at the same time. The
virus copies the API addresses from the stack into the
second page, then transfers control to the fi rst page.

I LIKE TO MOVE IT MOVE IT
In order to restore the PLT (see below), the virus changes
the attributes for the page in which it exists to read/write,
and does the same for the following page. By always
marking two pages, despite the fact that the virus is
smaller than a page, the virus does not need to worry
about the offset of the PLT. Since the paging API requires
an aligned base as a starting address, the virus must either
place itself at exactly such an aligned address (which
might require moving the PLT, and thus everything around
it, too – a very complicated operation, though the virus
author demonstrated that a similar thing can be done, in
his Crimea virus [see VB, February 2008, p.4]), or the size
of the marking must be increased appropriately (which is
the case here) in case the PLT spans two pages. However,
there is an implicit assumption here – that the PLT is no
larger than 8KB, which is equivalent to 512 functions.
While the vast majority of fi les will not import nearly as
many functions, we have seen such extreme examples
on the Windows platform. It is certainly possible that
such fi les could exist on the Linux platform, too. In that
case, the virus will cause a segmentation fault while
rebuilding the PLT, which will cause the process to be
terminated.

The virus then builds a new PLT, beginning with the
second entry, by placing the indirect absolute jump, the
push and the relative jump once for each of the symbols.
The appropriate values for each are fi lled in as the PLT
is constructed. After the PLT has been restored, the virus
changes the attributes for the two pages to read/execute.
This is a potential bug, since if the PLT did not span two
pages, then the attributes for the next page might originally
have been something other than read/execute. Thus, by
changing the attribute to read/execute, an incompatibility
might be introduced that will cause the process eventually
to crash.

Finally, the virus is ready to search for fi les to infect.

THE MAKER’S MARK

The virus is interested in fi les that are at least 84 bytes long,
in ELF format for the Intel x86-based CPU, and not infected
already. The infection marker is the last byte of the e_ident
fi eld being set to 1. This has the effect of inoculating the
fi le against a number of other viruses, since a marker in this
location is quite common.

For each such fi le that is found, the virus searches within
the Section Header Table entries for an entry that is
named ‘.plt’. If the .plt entry is found, then the virus
checks if the section is large enough to contain the fi rst
entry and the virus body. If the section is too small, then
the fi le will not be infected, however the infection marker
is not added, so such a fi le could be examined repeatedly
in the future.

If the section is large enough, then the virus examines each
of the entries in the PLT, to ensure that the addresses are
arranged in increasing order. This is required because an
out-of-order table cannot be reconstructed by the routine
described above. If all goes well, then the virus overwrites
the PLT with the virus body, and saves some important
values in the code (the GOT pointer, the PLT-specifi c
relocation-table pointer, the number of PLT entries and the
original entrypoint). The virus changes the host entrypoint
to point directly to the virus code, and then sets the
infection marker.

CONCLUSION

As we can see, the PLT is another cavity, but not just
another cavity. Unlike others, the contents of the PLT must
be restored before the host can run. This benefi ts us, too – a
virus cannot be heavily entrypoint-obscuring if it uses the
PLT as a cavity, because the host cannot call any external
functions until the PLT is restored.

